Discrete limit and monotonicity properties of the Floquet eigenvalue in an age structured cell division cycle model - Modélisation mathématique, calcul scientifique
Article Dans Une Revue Journal of Mathematical Biology Année : 2015

Discrete limit and monotonicity properties of the Floquet eigenvalue in an age structured cell division cycle model

Résumé

We consider a cell population described by an age-structured partial differential equation with time periodic coefficients. We assume that division only occurs after a minimal age (majority) and within certain time intervals. We study the asymptotic behavior of the dominant Floquet eigenvalue, or Perron-Frobenius eigenvalue, representing the growth rate, as a function of the majority age, when the division rate tends to infinity (divisions become instantaneous). We show that the dominant Floquet eigenvalue converges to a staircase function with an infinite number of steps, determined by a discrete dynamical system. As an intermediate result, we give a structural condition which guarantees that the dominant Floquet eigenvalue is a nondecreasing function of the division rate. We also give a counter example showing that the latter monotonicity property does not hold in general.
Fichier principal
Vignette du fichier
1301.2151.pdf (576.46 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-00773211 , version 1 (09-01-2024)

Identifiants

Citer

Stéphane Gaubert, Thomas Lepoutre. Discrete limit and monotonicity properties of the Floquet eigenvalue in an age structured cell division cycle model. Journal of Mathematical Biology, 2015, 71 (6), ⟨10.1007/s00285-015-0874-3⟩. ⟨hal-00773211⟩
467 Consultations
20 Téléchargements

Altmetric

Partager

More