Neuronal avalanches in temporal lobe epilepsy as a noninvasive diagnostic tool investigating large scale brain dynamics - INRIA 2
Article Dans Une Revue Scientific Reports Année : 2024

Neuronal avalanches in temporal lobe epilepsy as a noninvasive diagnostic tool investigating large scale brain dynamics

Résumé

The epilepsy diagnosis still represents a complex process, with misdiagnosis reaching 40%. We aimed at building an automatable workflow, helping the clinicians in the diagnosis of temporal lobe epilepsy (TLE). We hypothesized that neuronal avalanches (NA) represent a feature better encapsulating the rich brain dynamics compared to classically used functional connectivity measures (Imaginary Coherence; ImCoh). We analyzed large-scale activation bursts (NA) from source estimation of resting-state electroencephalography. Using a support vector machine, we reached a classification accuracy of TLE versus controls of 0.86 ± 0.08 (SD) and an area under the curve of 0.93 ± 0.07. The use of NA features increase by around 16% the accuracy of diagnosis prediction compared to ImCoh. Classification accuracy increased with larger signal duration, reaching a plateau at 5 min of recording. To summarize, NA represents an interpretable feature for an automated epilepsy identification, being related with intrinsic neuronal timescales of pathology-relevant regions.
Fichier principal
Vignette du fichier
s41598-024-64870-3-1.pdf (3.79 Mo) Télécharger le fichier
Manuscript_Epilepsy_Decoding_Suppl.pdf (1.9 Mo) Télécharger le fichier
Origine Publication financée par une institution
licence

Dates et versions

hal-04618262 , version 1 (01-11-2024)

Licence

Identifiants

Citer

Marie-Constance Corsi, Emahnuel Troisi Lopez, Pierpaolo Sorrentino, Simone Cuozzo, Alberto Danieli, et al.. Neuronal avalanches in temporal lobe epilepsy as a noninvasive diagnostic tool investigating large scale brain dynamics. Scientific Reports, 2024, 14 (1), pp.14039. ⟨10.1038/s41598-024-64870-3⟩. ⟨hal-04618262⟩
77 Consultations
29 Téléchargements

Altmetric

Partager

More