LOCAL ZETA FUNCTIONS FOR A CLASS OF P-ADIC SYMMETRIC SPACES (II) - Algèbre, topologie, groupes quantiques, représentations
Pré-Publication, Document De Travail Année : 2024

LOCAL ZETA FUNCTIONS FOR A CLASS OF P-ADIC SYMMETRIC SPACES (II)

Pascale Harinck

Résumé

In this paper we study the zeta functions associated to the minimal spherical principal series of representations for a class of reductive p-adic symmetric spaces, which are realized as open orbits of some prehomogeneous spaces. These symmetric spaces have been studied in the paper arXiv: 2003.05764. We prove that the zeta functions satisfy a functional equation which is given explicitly (see Theorem 4.3.9 and Theorem 4.4.5). Moreover, for a subclass of these spaces, we define L-functions and epsilon-factors associated to the representations.
Fichier principal
Vignette du fichier
Equations_Fonctionnelles_Serie_Principale_12(Pascale).pdf (660.19 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-04639399 , version 1 (09-07-2024)

Identifiants

Citer

Pascale Harinck, Hubert Rubenthaler. LOCAL ZETA FUNCTIONS FOR A CLASS OF P-ADIC SYMMETRIC SPACES (II). 2024. ⟨hal-04639399⟩
42 Consultations
20 Téléchargements

Altmetric

Partager

More