$\Gamma$-convergence and stochastic homogenization of integral functionals defined on measures - Université de Nîmes
Pré-Publication, Document De Travail Année : 2024

$\Gamma$-convergence and stochastic homogenization of integral functionals defined on measures

Résumé

We study the $\Gamma$-convergence of nonconvex integral functionals on vector measures, investigating both $\Gamma$-convergence and stochastic homogenization. By setting abstract conditions on the behavior of adapted minimization problems associated with these functionals, we establish an integral representation of the $\Gamma$-limit. This representation is then used to prove stochastic homogenization theorems, resulting in new homogenization formulas.
Fichier principal
Vignette du fichier
G-convergence-functionals-on-measures.pdf (540.64 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-04824511 , version 1 (06-12-2024)

Identifiants

  • HAL Id : hal-04824511 , version 1

Citer

Omar Anza Hafsa, Jean-Philippe Mandallena, Gérard Michaille. $\Gamma$-convergence and stochastic homogenization of integral functionals defined on measures. 2024. ⟨hal-04824511⟩

Collections

UNIMES
0 Consultations
0 Téléchargements

Partager

More