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Abstract 24 

The studied area on the Beauce plateau (France) was densely inhabited during the Iron Age and 25 

several archaeological excavations have enriched our knowledge of agrarian systems during this 26 

period. This study investigates fertilisation management between 400 and 80 BCE focusing on 27 

numerous crop storage remains from three neighbouring farms. We sampled 18 cereal groups with 28 

50 grains to conduct stable carbon and nitrogen isotope analyses commonly used for reconstructing 29 

past agricultural practices, in particular δ15N as a proxy for manuring.  30 

The δ15N values range between 1.3‰ and 7.6‰, with an increase over time from 3.2‰ to 5.6‰ 31 

(mean by occupation phase), reflecting a continuous use of manure, consistent with the dynamism of 32 

agricultural activities during the Second Iron Age. All three farms seem to have applied the same 33 

manuring strategies. Barley and emmer may have been manured more often than free-threshing 34 

wheats, even when free-threshing wheats are the dominant crop. This contrasts with the 35 

neighbouring Ile-de-France region and indicates diversity in agropastoral systems between regions. 36 

The analysis of several grain groups from the same silo shows diversified δ15N values between crops, 37 

reflecting various manuring rates: some fields were fertilised while others were less so. This is 38 

consistent with the description of a large-scale farming system, with a large cultivated area and a 39 

mosaic landscape. 40 
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1. Introduction 43 

1.1. Research context 44 

Agricultural productions during the Second Iron Age are relatively well known in the northern half of 45 

France (Zech-Matterne et al., 2013, Malrain et al., 2018). In earlier periods, crops were diversified and 46 

appear to have been cultivated at the household level. Changes occurred during the Second Iron Age 47 

with a reorganisation of agricultural practices to increase production. Through the study of 48 

archaeological weed ecology, an extensification of cropping systems can be claimed in some regions 49 

(Normandie, Picardie, Île-de-France and Champagne) (Zech-Matterne and Brun, 2016). The 50 

occurrence of nitrophilous weeds (75 out of 211 taxa) combined with crops suggests the 51 

maintenance of soil fertility for several centuries, possibly through crop rotation, grass or tilled 52 

fallow, farmyard manure, penning livestock on the fallows or in fields during intercrop periods (Zech-53 

Matterne et al., 2018). In north-western France, the increase in pulses may indicate a cereal-legume 54 

rotation (Neveu et al., 2021). This technique slows down soil depletion and reduces amendment 55 

rates. In north-eastern France, farm production was less diversified and specialized in the culture of 56 

one or two cereals (Zech-Matterne et al., 2013, 2014). Fertility maintenance must thus have involved 57 

other solutions than legume rotations. However, the weed ecology approach cannot identify the 58 

(natural or anthropic) origin of soil fertility.  59 

Characterising fertilisation practices enhances our understanding of (more or less intensive or 60 

extensive) cereal production modes, impacting crop yields, labour force, labour productivity and land 61 

use. In intensive cropping systems, a large amount of labour is invested per unit area to ensure good 62 

crop growth, which allows high yields (Morrison 1994). The choice of an extensive cropping system 63 

affects the use of manure: manure is supposed to be spread more heterogeneously across the 64 

numerous farmland fields than in intensive agriculture. Manure inputs involves livestock 65 

management and collection, storage and transport of dung. Moreover, fertility management was not 66 

necessarily homogeneous from one territory to another, depending on environmental constraints 67 

and farmers’ or owners’ choices. We therefore consider the interest of detecting these practices on a 68 

finer scale than the weed ecology studies described above. In this study, fertilisation practices were 69 

investigated in three neighbouring farms from the Second Iron Age in the Centre region of France, 70 

using biogeochemical analysis of crop remains, a methodology proven to be suitable for exploring 71 

past soil fertility (Bogaard et al., 2007, 2013; Fraser et al., 2011).  72 

1.2. Description of the sites 73 

The farms are located on the Beauce plateau within 2 km of each other, halfway between Chartres 74 

and Orléans (Figure 1). Aerial surveys and trial trenching have shown that the surrounding land was 75 

densely inhabited during the Iron Age, with a predominance of enclosed rural settlements during the 76 

Second Iron Age. The Roman Chartres-Orléans Road, probably of protohistoric origin, runs between 77 

the studied sites and highlights their inclusion in a wider network of agricultural settlements, with 78 

likely interdependent relationships between farms (Malrain, 2020).  79 

The Beauce plateau, in the Paris Basin, is an area of limestone outcrops, covered with fertile silts. The 80 

topography is not very contrasted. Valley bottoms are currently dry, but they were probably formerly 81 

wet and wooded. The dry and deforested plateaus hosted grasslands and crops. The farms are 82 

located on plateaus, close to slopes, at the interface between these two environments (Coussot, 83 

2010; Martin, 2010; Pradat, 2010).  84 
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 85 

Figure 1. Location of the sites in their archaeological environment (a) and phased plans of Prasville 86 

“Les Grandes Canettes” (b), Prasville “Vers Chesnay” (c) and Ymonville “Les Hyèbles” (d). The sampled 87 

structures are shown on the plans. Data: Yvernaut, 2010; Bailleux, 2010; Lusson, 2011; Josset, 2012; 88 

IGN BD Parcellaire 2020; EAA EU-DEM 2020. 89 
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At the intermediate-sized farm of Prasville “Vers Chesnay” (Bailleux, 2010), five building phases 90 

between 325 BCE and 300 CE have been identified. During phases 1 and 2 (325/150 BCE), a silo 91 

cluster organised around small post-mounted buildings provided good storage capacity. Some small 92 

ditches mark the early stages of structuring the habitat. From 200 BCE onwards, the settlement 93 

extended over a larger area while building size also increased, and large ditches were established, 94 

forming an open enclosure. The settlement comprised agricultural and craft activities: inhabitants 95 

bred Caprinae and cultivated mainly free-threshing wheats (45% of food plant remains) and emmer 96 

(45%). The other food plant species are rare. In the third phase (150/80 BCE), the habitat moved 97 

150 m to the east, with no chronological hiatus, and three successive ditched enclosures were 98 

constructed. Emmer became the main cultivated crop (74%). Cattle and horses were raised. From the 99 

following phases onwards, the architecture became monumental and during the Roman Empire, 100 

production focused on cattle breeding. 101 

The excavation of Prasville “Les Grandes Canettes” (Lusson, 2011) was carried out over a small 102 

surface, on the edge of a smaller farm. Little is known of spatial organisation, as the habitat 103 

continues northwards, outside the excavation limits. The site is mainly characterised by the presence 104 

of silos and pits and no ditches structuring the space were observed. Two phases were identified 105 

(400/300 BCE and 325/250 BCE) with agricultural activities focusing on emmer cultivation (73% of 106 

food plant remains) and pig and caprine husbandry. Millet cultivation was secondary (11%) and some 107 

cattle were also raised. 108 

Ymonville “Les Hyèbles” (Josset, 2012) was intensively settled between its foundation in the 109 

sixth/fifth centuries and its abandonment in the first century BCE. The settlement was an aristocratic 110 

farm. Phases 2 (500/325 BCE) and 3 (325/150 BCE) correspond to the establishment of the 111 

occupation centred around two founding graves. A large D-shaped enclosure was installed, 112 

encompassed by a wider one. The main D-shaped enclosure comprised a building facing an empty 113 

area (potentially a public place), surrounded by trophies exhibition posts and numerous silos. 114 

Multiple activities were carried out: crafting (metallurgy, leather working, weaving and milling), 115 

husbandry, cereal cropping (mainly free-threshing wheats – 61% – and secondarily barley – 26%) and 116 

social events (trophies exhibition and assemblies). This was thus a dual-purpose settlement 117 

(agriculture and sanctuary). During phase 4 (150/50 BCE), the initial settlement was still occupied, 118 

but a new centre was built 100 m to the south. A new residential building was enclosed by a large 119 

quadrangular ditch. The last settlement phase dates from the end of the first century BCE and 120 

corresponds to the abandonment of enclosures and the digging of a Roman limestone quarry. 121 

1.3. The use of stable nitrogen isotope values in highlighting soil fertility management 122 

Cereals take up nitrogen from the soil, largely derived from the decomposition of organic matter by 123 

microorganisms. These processes of transformation of organic nitrogen into bioavailable mineral 124 

forms lead to different isotopic compositions, subject to many environmental factors, such as 125 

rainfall, temperature, soil depth, topographic position, and the overall nature of the parent material 126 

(Amundson et al., 2003; Högberg, 1997). The anthropogenic history of the soil and agricultural 127 

activities are also important factors in stable nitrogen isotope ratio variation (δ15N). 128 

From the 1970s onwards, ecologists and agronomists noticed that δ15N values in soil increase with 129 

the application of farmyard manure (Riga et al., 1971; Choi et al., 2003; Bol et al., 2005). During 130 

storage and composting, animal manure loses part of its nitrogen, preferentially the lighter 14N 131 

isotope, through ammonia volatilization, leading to significant relative enrichment in the heavier 15N 132 

isotope (Högberg, 1997; Szpak, 2014). The application of manure thus causes relative 15N-enrichment 133 

in soil and plants. When charred under temperatures between ~215-260°C (i.e. the charring window 134 
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for preservation of grain morphology; Charles et al., 2015), charred plant remains are likely to 135 

preserve their in vivo δ13C and δ15N values (DeNiro and Hastorf, 1985; Nitsch et al., 2015) and is 136 

currently used to investigate manuring in archaeological contexts (Bogaard et al., 2007, 2013; 137 

Aguilera et al., 2008; Fraser et al., 2011; Kanstrup et al., 2011). 138 

Long-term experiments conducted in temperate Europe have shown that plants growing in a poorly 139 

anthropized environment, or in plots that have not been manured for a long time, generally have 140 

δ15N values below 3‰. Values above this threshold refer to plants grown on soils enriched in 15N by a 141 

high concentration of organic matter, deriving from natural conditions or human activities. Above 142 

6‰, δ15N values would reflect high manuring rates (e.g., 25-35 t/ha) in the long term (Fraser et al., 143 

2011; Bogaard et al., 2013). For other regions, further experiments were conducted to define locally 144 

adapted thresholds (Larsson et al., 2019). The manuring effect can be detected as early as the first 145 

year after manure application (Fraser et al., 2011). Manuring rates and application frequency affect 146 

the manuring effect on δ15N values: 15N-enrichment is greater the more a plot is fertilised in quantity 147 

and over time. After the cessation of fertilisation, δ15N values gradually decrease. Measurements of 148 

intermediate δ15N values could indicate either abundant recent fertilisation, medium fertilisation 149 

over the long term or the residues of long-term fertilisation abandoned some time ago. Very high 150 

δ15N values (over 7-9‰) indicate intensive management practices, with high manuring rates 151 

comparable to those applied in garden agriculture. 152 

Other agricultural practices may affect the δ15N values of the soil and plant (Szpak, 2014). Clearing 153 

lands by burning them alters the nitrogen cycle and leads to an increase in δ15N values, through 154 

various complex processes with impacts that can last for several years or even decades. Tillage brings 155 

formerly mineralised nutrients to the soil surface, but its influence on crop δ15N values is unlikely 156 

(Selles et al., 2011). Other fertilisation techniques, such as cereal-legume rotation combined with 157 

green manure (a legume crop voluntarily cut and buried in the ground), decrease δ15N values in soil 158 

(Riga et al., 1971) and probably those of the following crops. For this reason, it may be difficult to 159 

differentiate cereals cultivated after legumes from cereals grown without manuring. Further 160 

experiments are needed to understand the impact of legumes cultivation on soil δ15N values. 161 

In order to measure a baseline for δ15N values of unfertilised flora, we use the deer bone collagen 162 

proxy (Bogaard et al., 2013). Wild fauna is very rare in Second Iron Age sites and only δ15N values 163 

from 20 deer bone were published for the early Roman sites of Jouars-Pontchartrain “La Ferme 164 

d’Ithe” (n=10, range: 3.1–6.1‰) and Palaiseau “Les Trois Mares” (n=10, range: 4.9–6.5‰), localised 165 

60km north-east of the three Beauce farms, also in the south-western Paris Basin (Aguilera et al., 166 

2018). The mean of the δ15N values is 5.0±1.0‰ (Supplementary Material 1). After subtracting a 3‰ 167 

value for the trophic level shift (Caut et al., 2009), the δ15N values of the deer diet can be estimated 168 

to 2.0±1.0‰. As discussed in Styring et al. (2017), δ15N values above mean+1 standard deviation of 169 

deer diet could be interpreted as 15N-enriched with respect to non-anthropic flora. According to 170 

these local deer samples, the local baseline for δ15N values of unfertilised flora is 3.0‰, similar to the 171 

3‰-threshold established by long-term manuring experiments in others parts of temperate Europe 172 

(Fraser et al., 2011). 173 

1.4. Objectives and hypothesis 174 

Dense land use in the area and high storage capacity (numerous silos) during the whole Second Iron 175 

Age illustrate the dynamism of agricultural production, alongside other activities, reflecting the 176 

transformation of protohistoric society (Malrain et al., 2018). The development and enrichment of 177 

rural settlements during the Second Iron Age relied heavily on agricultural profits, which in turn 178 

depended on fertilisation techniques for increasing yields. Here, we investigate manure fertilisation 179 
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and variations in manuring, depending on the cereals, production units and time periods. The 180 

sampling protocol was adapted in a way to approach these different spatiotemporal scales. 181 

Production modes are compared across three neighbouring farms, over several centuries of 182 

occupation, but also within the same storage structure, in order to detect fine variations between 183 

fields. 184 

We assume that if Second Iron Age farmers used manure to increase yields, then this practice should 185 

be reflected in the nitrogen isotopic composition of cereals. In an extensive farming system, the 186 

cultivated area is large and manure spreading cannot reasonably be uniform across all fields. 187 

Variations in cereal δ15N values are expected. Some species may have been favoured over others, 188 

and would have received more manure. 189 

2. Material and methods 190 

2.1. Sample selection and preparation 191 

Samples were obtained from detrital deposits with a high density of charred grains. These 192 

concentrations consist of aggregate cereal grains, dominated by one or two taxa, and weed seeds, 193 

charred and eliminated at the same time, and most probably harvested in the same year or at most a 194 

few years apart. We selected the three dominant taxa of the sites: hulled barley (Hordeum vulgare), 195 

free-threshing wheats (Triticum aestivum ssp. aestivum/T. turgidum ssp. durum/T. turgidum ssp. 196 

turgidum group) and emmer wheat (Triticum turgidum ssp. dicoccum). Fifty grains of the same taxon 197 

(herein “one grain group”) were collected from each archaeobotanical deposit to accurately reflect 198 

crop values at the field scale. The grain group is subdivided into five samples composed of 10 grains 199 

each to reflect part of intra-field variability, which can be significant within a single plot (Bogaard et 200 

al., 2007; Larsson et al., 2019). A total of 18 grain groups were studied (90 samples with a total of 900 201 

grains).  202 

Archaeological events at the sites have been relatively dated on the basis of artefacts. The sampled 203 

structures can be grouped into three consistent periods between the three farms (Figure 2 and Table 204 

1): 205 

- Period 1 (400/325 BCE): silos F1001, F1221 and F3149 are from phase 2 of Ymonville “Les 206 

Hyèbles”. This is the period during which Second Iron Age farms were installed in this area. 207 

We sampled six grain groups for this period. 208 

- Period 2 (325/150 BCE): silos F180 (phase 2 of Prasville “Les Grandes Canettes”), F1121 209 

(phase 1-2 of Prasville “Vers Chesnay”), F1006, F1071 and F2057 (phase 3 of Ymonville “Les 210 

Hyèbles”) correspond to a period of continuity or even increasing storage capacity with the 211 

creation of the Prasville “Vers Chesnay” farm. Eight grain groups were obtained from these 212 

silos. 213 

- Period 3 (150/80 BCE): silos F1251 and F4096 (four grain group) belong to phase 3 of Prasville 214 

“Vers Chesnay”. This phase corresponds to the relocation and creation of an establishment in 215 

Prasville “Vers Chesnay” and Ymonville “Les Hyèbles”, reflecting new dynamics in rural 216 

habitat management. 217 

The grains were cleaned of sedimentary concretions and roots by gently scraping under a 218 

stereomicroscope. In order to remove soil contaminants (mainly carbonates in this calcareous 219 

region), samples were treated with a gentle acid treatment (adapted from Vaiglova et al., 2014; 220 

Aguilera et al., 2018): 10 whole grains were treated in 10 mL of a solution of 0.5 M HCl for 1 h at 221 

70° C, soaked in distilled water at room temperature with water changed after 24h, 8h and 16h, 222 

freeze-dried and milled to a fine powder with an agate pestle and mortar.  223 
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 224 

Figure 2. Silo dating and site periodisation. 225 

 226 

2.2. Isotopic analyses 227 

Measurements were performed on 1 mg of grain powder in an elemental analyser (Thermo Flash 228 

2000), interfaced with an isotope mass spectrometer (Thermo DeltaV Advantage), at the Muséum 229 

national d’Histoire naturelle (Paris, France). Stable isotope ratios measurement results are expressed 230 

using δ15N and δ13C values (‰), relative to atmospheric N2 and the VPDB standard, respectively. The 231 

precision and accuracy of analyses are determined using a laboratory standard (alanine) normalized 232 

to the IAEA-600 caffeine international standard, and a peach leaf standard (NIST SRM 1547). Over the 233 

course of all analyses, the alanine standard (n = 24) gave mean values of 0.72 ± 0.13‰ for δ15N 234 

(expected value = 0.60‰), -21.82 ± 0.13‰ for δ13C (expected value = -22.17‰), and 40.50 ± 0.29 % 235 

for C content (expected value = 40.44 %) and the peach leaf standard (n = 21) gave mean values of 236 

2.87 ± 0.05 % for N content (expected value = 2.97 %). Analytical precision, determined within each 237 

run from eight alanine analyses, varied between ± 0.06‰ and ± 0.16‰ for δ13C; ± 0.09‰ and 238 

± 0.17‰ for δ15N; ± 0.15 % and ± 0.30 % for C content. For the N content, analytical precision, 239 

determined from seven peach leaf analyses, ranges from ± 0.02 % to ± 0.04 %. 240 

Following the arguments of Nitsch et al. (2015), who recommend considering an offset of 0.31‰ for 241 

δ15N and 0.11‰ for δ13C for the charring effect, the measured values were corrected. Other studies 242 

also show a charring effect (Fraser et al., 2013; Styring et al., 2013), and although some did not 243 

(Aguilera et al., 2008; Kanstrup et al., 2012; Szpak and Chiou, 2019), the correction is necessary when 244 

comparing cereal δ15N values to deer diet δ15N baseline (Nitsch et al., 2015).  245 

The results for δ13C values are given and discussed in Supplementary Material 2, since we do not 246 

interpret them in terms of agricultural practices. 247 

2.3. Statistical analyses 248 

In order to understand variations in δ15N measurements, a linear mixed-effects model was 249 

calculated, with the taxon and period as fixed effects (independent variables) and cereal grain group 250 

as a random effect. We use a mixed model because samples from the same grain group are 251 

correlated, and considered to be repeated measurements from the same deposit. Grain groups are 252 

compared two by two with the non-parametric Wilcoxon rank-sum test. All statistical tests and 253 

models are evaluated at an alpha level of 10%. 254 
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Statistical analyses were carried out using the statistical programming language R 4.0.2 (R Core Team, 255 

2020). Models and their pseudo-R² were calculated with the nlme and the piecewiseSEM packages 256 

(Pinheiro et al., 2021; Lefcheck, 2016). Graphics were produced with the ggplot2 package (Wickham, 257 

2016).  258 

3. Results 259 

Results from stable isotope analyses are shown in the Supplementary Material 3. Figure 3 shows δ15N 260 

and δ13C values for each sample (10 grains each), grouped by archaeological features. All grain 261 

groups are clearly distinguished from each other on the basis of combined δ15N and δ13C values, even 262 

when they were retrieved from the same silo. Moreover, variability within each grain group is low 263 

(standard deviation within a grain group is on average 0.4‰ for δ15N and 0.2‰ for δ13C). This 264 

suggests limited alteration of the grains’ original stable isotope ratios by diagenesis. Summarized 265 

data for each grain group are shown in Table 1 and in Figure 4. Overall, δ15N values range between 266 

1.0‰ (emmer wheat in silo F3149) and 7.5‰ (emmer wheat in silo F1251).  267 

Overall, δ15N values of the three taxa overlap, due to their wide range of variation. δ15N values 268 

increase from one period to the next, on average +1.2‰ at each step, visible in Figure 4 (mean [90% 269 

CI] for Period 1: 2.9‰ [2.5; 3.3]; Period 2: 4.2‰ [3.9; 4.4]; Period 3: 5.3‰ [4.9; 5.7]).  Linear mixed-270 

effects models have been calculated to verify these observations (Table 2). 271 
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 272 

Figure 3. Plot of δ15N and δ13C of archaeological grains, grouped by archaeobotanical deposit. Each 273 

point is one sample of 10 grains. The black dots and crosses show the mean and 1 standard deviation 274 

for each grain group. Orange lines (δ15N): thresholds for manuring rates after Fraser et al. 2011 and 275 

Bogaard et al. 2013 (below 3‰, no manuring; 3-6‰, moderate or ancient manuring; above 6‰, high 276 

manuring rates). 277 
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Id Site Silo Date Period Taxon n 
δ15N 

(mean ± 1sd) 

δ13C 

(mean ± 1sd) 

YLH F 1001, SU 18 400-325 BCE Period 1 Free-threshing wheats 5 4.5 ± 0.3 -22.7 ± 0.3 
YLH F 1001, SU 19 400-325 BCE Period 1 Barley 5 2.2 ± 0.5 -23.6 ± 0.3 
YLH F 1001, SU 19 400-325 BCE Period 1 Free-threshing wheats 5 2.2 ± 0.6 -22.7 ± 0.2 
YLH F 1221 400-275 BCE Period 1 Barley 5 3.9 ± 0.4 -23.4 ± 0.2 
YLH F 1221 400-275 BCE Period 1 Free-threshing wheats 5 3.2 ± 0.8 -22.8 ± 0.2 
YLH F 3149 400-275 BCE Period 1 Emmer 5 1.4 ± 0.3 -23.0 ± 0.2 
PGC F 180 325-250 BCE Period 2 Emmer 5 4.6 ± 0.1 -22.2 ± 0.2 
PVC F 1121 325-150 BCE Period 2 Emmer 5 4.6 ± 0.7 -23.1 ± 0.3 
PVC F 1121 325-150 BCE Period 2 Free-threshing wheats 5 3.8 ± 0.4 -22.8 ± 0.3 
YLH F 1006 200-150 BCE Period 2 Barley 5 4.4 ± 0.3 -23.5 ± 0.4 
YLH F 1006 200-150 BCE Period 2 Free-threshing wheats 5 3.2 ± 0.2 -22.6 ± 0.2 
YLH F 1071 200-150 BCE Period 2 Barley 5 5.8 ± 0.7 -23.6 ± 0.3 
YLH F 2057 275-250 BCE Period 2 Barley 5 3.9 ± 0.3 -22.3 ± 0.2 
YLH F 2057 275-250 BCE Period 2 Free-threshing wheats 5 3.2 ± 0.1 -21.7 ± 0.2 
PVC F 1251 150-80 BCE Period 3 Emmer 5 6.8 ± 0.5 -22.9 ± 0.3 
PVC F 1251 150-80 BCE Period 3 Free-threshing wheats 5 4.1 ± 0.4 -23.0 ± 0.2 
PVC F 4096 150-80 BCE Period 3 Emmer 5 5.3 ± 0.1 -22.0 ± 0.1 
PVC F 4096 150-80 BCE Period 3 Free-threshing wheats 5 5.0 ± 0.4 -21.0 ± 0.2 

Table 1. Stable nitrogen and carbon isotope values of cereal grains analysed for each grain group. n: 279 

number of analysed samples. Each sample includes 10 grains. 280 

 281 

 282 

Figure 4. δ15N of archaeological grains, grouped by grain group. Each point is one sample of 10 grains. 283 

Orange lines: thresholds for manuring rates after Fraser et al. 2011 and Bogaard et al. 2013 (below 284 

3‰, no manuring; 3-6‰, moderate or ancient manuring; above 6‰, high manuring rates). 285 

 286 

 287 
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 288 

 289 

 Group 1 Group 2 
Difference δ15N (‰) 

[90% CI] 
DF t p 

δ15N depending on taxon and period 
pseudo-R²=0.91 

Taxon: p=0.348 – Period: p=0.015 

Barley Emmer -0.2 [-1.5; 1.0] 13 -0.332 0.745 

Barley 
Free-threshing 

wheats 
-0.7 [-1.8; 0.4] 13 -1.199 0.252 

Period 1 Period 2 1.2 [0.2; 2.2] 13 2.088 0.057 

Period 1 Period 3 2. 4 [1.2; 3.7] 13 3.403 0.005 

Model bis: δ15N depending on taxon 
and period (extract) 

Emmer 
Free-threshing 

wheats 
-0.5 [-1.6; 0.6] 13 -0.834 0.419 

Period 2 Period 3 1.3 [0.0; 2.5] 13 1.831 0.090 

Table 2. Results of the linear mixed-effects models (δ15N), with taxon and period as fixed effects and 290 

grain group as a random effect. p values <0.1 are shown in bold. Modelled difference: δ15Ngroup 2-291 

δ15Ngroup 1 292 

 293 

As the studied deposits are not necessarily synchronous within each period (each dating phase 294 

covers several decades), it is essential to analyse at a finer scale, i.e., to compare the different cereal 295 

species from a same concentration, in order to compare agricultural treatments between cereals. 296 

Comparisons are made between barley and free-threshing wheats and between emmer and free-297 

threshing wheats (Table 3). Sampling does not allow for direct comparisons between emmer and 298 

barley, because they were not found together. 299 

In a given deposit, inter-cereal differences in δ15N values can be high (1.3‰ and 2.7‰ for silos F1006 300 

and F1251 respectively). In the four silos where both barley and free-threshing wheats are present, 301 

barley always yielded higher δ15N values on average, even though this difference is only relatively 302 

high in two cases (+0.7‰ in silo F2057, +1.3‰ in silo F1006), low in silo F1221 (+0,5‰) and null in 303 

F1001. Emmer always yielded similar or higher δ15N values compared to free-threshing wheats 304 

(+2.7‰ in silo F1251, +0.7‰ in silo F1121, not significant difference in F4096). 305 

 306 

Id Site Silo Group 1 Group 2 
Difference δ15N (‰) 

[90% CI] 
p 

YLH F 1001, SU 19 Barley Free-threshing wheats 0,0 [-0.8; 0.7] 0.675 

YLH F 1006 Barley Free-threshing wheats -1.3 [-1.6; -0.9] 0.012 

PVC F 1121 Emmer Free-threshing wheats -0.7 [-1.5; -0.3] 0.076 

YLH F 1221 Barley Free-threshing wheats -0, 5 [-1.5; 0.1] 0.222 

PVC F 1251 Emmer Free-threshing wheats -2.7 [-3.4; -2.2] 0.008 

YLH F 2057 Barley Free-threshing wheats -0.7 [-0.9; -0.4] 0.008 

PVC F 4096 Emmer Free-threshing wheats -0.4 [-0.8; 0.1] 0.151 

Table 3. Results of the Wilcoxon rank-sum test, comparing the taxa by archaeobotanical deposit. 307 

p values <0.1 are shown in bold. Difference = δ15Ngroup 2-δ15Ngroup 1 308 

 309 

 310 
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 311 

Id Site Silo 
Group 1 

(SU 18) 

Group 2 

(SU 19) 

Difference δ15N (‰) 

[90% CI] 
p 

YLH F 1001 Free-threshing wheats Free-threshing wheats -2.4 [-3.0; -1.7] 0.008 

PVC F 1001 Free-threshing wheats Barley -2.4 [-2.9; -1.8] 0.012 

Table 4. Results of the Wilcoxon rank-sum test, comparing the grain groups from different 312 

stratigraphic units of the same silo F 1001. SU 18 is earlier than SU 19. p values <0.1 are shown in 313 

bold. Difference = δ15Ngroup 2-δ15Ngroup 1 314 

 315 

4. Discussion 316 

4.1. Manuring as a cause of increased δ15N values 317 

The great majority of cereal δ15N values are above 3‰, reflecting 15N-enrichment of cultivated soils 318 

by human activities in most cases. Nitrogen cycles are complex (Szpak, 2014) and several agricultural 319 

practices can influence the nitrogen isotopic composition of the environment (manuring, slash-and-320 

burn cultivation, green manure). As shown by paleoenvironmental studies in the study area (Coussot, 321 

2010; Martin, 2010; Pradat, 2010) and palynological analyses at a regional scale (Blancquaert et al., 322 

2012), deforestation intensified during the Iron Age. The area was densely inhabited for a long time, 323 

with long-term shifting habitats. Even if the whole area was not cultivated at the same time (e.g., 324 

with fallow spaces), the land must have been cleared a long time ago and potential clearing or 325 

burning effects are unlikely. At the three farms, evidence for legume cultivation is scarce (less than 326 

3% of food plant remains), as observed on a very large corpus of sites in the Paris Basin (Zech-327 

Matterne et al., 2014, 2020), so their impact on soil quality must have been minimal. Hence, one of 328 

the main causes of δ15N evolution is, in this case, the spreading of animal and human excrement 329 

either in the form of manure collected from stalls or by the mobile penning of livestock on land. 330 

Stables and dung-yards are rare on Iron Age sites. Very few of them are known in France (Bosche et 331 

al., 2009, pp. 68–71; Gaudefroy, 2016, p. 107; Hinguant et al., 1998, pp. 74–83; Mathiot, 2012) and 332 

none was positively identified at the sites studied here. This rarity can be explained by cultural as 333 

well as taphonomic factors (these features are identified in Roman farms). Indeed, it has been argued 334 

that livestock (Caprinae, pigs, and a few cattle; Bayle, 2011, 2010) were not stalled, but herded 335 

outdoors, with light shelters (Zimmermann, 1999). Penning livestock on cultivated plots during 336 

intercrop periods after daily grazing fertilises the land without having to store and transport manure. 337 

Ditch cleaning, farm waste, as well as human or pig excrement may have been another source of 338 

fertiliser, especially for fields closer to the farm, due to transport limitations. 339 

During Period 1 (400/325 BCE), the δ15N values of half the grain groups are below 3‰. Thereafter, 340 

δ15N values increase continuously, with all measurements exceeding the 3‰-threshold and one of 341 

more than 6‰ at the Period 3 (emmer from silo F1251). This increase can be explained by 342 

continuous fertilisation over three centuries, gradually enriching the soil and plants in 15N. 343 

4.2. Relationship between agricultural practices and land use 344 

The increase in δ15N values from Period 1 (400/325 BCE) to Period 3 (150/80 BCE) suggests the 345 

repeated use of manure. This result is consistent with studies of other areas in northern France for 346 

Second Iron Age and Roman period (Aguilera et al., 2018). This increase can be related to the 347 

evolution of habitats. Period 1 (400/325 BCE) corresponds to the installation of the major site of 348 
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Ymonville “Les Hyèbles”, adding a new large centre of production on the plateau, with agricultural 349 

activities contributing to the 15N-enrichment of cereals. During Period 2 (325/150 BCE), the 350 

occupation of the area was dynamic, with the rise of Prasville “Vers Chesnay”. Sheep grazing 351 

between crops and the use of pig and human manure may have increased soil and plant δ15N values. 352 

The third period was one of habitat restructuration (farm displacement and expansion). Another 353 

source of manure may have been used, with cattle and horse rearing alongside sheep and pigs. 354 

The three sites correspond to different social statuses. Ymonville “Les Hyèbles” was a major 355 

aristocratic farm, Prasville “Vers Chesnay” an intermediate farm and Prasville “Les Grandes Canettes” 356 

a smaller settlement. Despite these hierarchical differences, cereals show similar isotopic 357 

composition, reflecting the sharing of agricultural practices and the same manure production 358 

capacity between farmers from the same area. The variability of δ15N values (over 5‰ amplitude) 359 

suggests a wide range of soil fertility conditions, most probably linked to different manuring rates 360 

and the history of plots. 361 

4.3. Interspecific differences in nitrogen isotopic composition 362 

Different cereal species growing under the same environmental conditions have comparable 363 

nitrogen isotopic composition (Fraser et al., 2011). Crops with similar δ15N values (e.g. barley and 364 

free-threshing wheats from the F 1001, SU 19) do not necessarily indicate that they were grown in 365 

the same field, but rather that they were grown on soils with the same fertility. The majority of the 366 

grain groups could have been fertilised, but differences are visible within the same archaeobotanical 367 

deposit (Table 3). δ15N values are greater for barley than for free-threshing wheats in two out of four 368 

silos (F1006, F2057). The average difference is slight (around 1‰) but could nonetheless show that 369 

barley was sometimes more carefully cultivated (more often manured), as observed during the 370 

Hallstatt period in Germany (Styring et al., 2017) and during the fifth century BCE in the city of 371 

Lattara in southern France (Alagich et al., 2018). The same observation applies to emmer, which is 372 

more fertilised than free-threshing wheats (F1121, F1251). This contrasts with agronomic knowledge 373 

of current varieties, where free-threshing wheats are more nutrient-demanding than barley and 374 

emmer to ensure good yields. Farmers in Beauce chose to focus on fertilising certain crops, and not 375 

necessarily the dominant crop (around 70% of cereal grains are free-threshing wheats during Period 376 

1 in Ymonville “Les Hyèbles” and Period 2 in Prasville “Vers Chesnay”; Pradat, 2010, unpublished). By 377 

contrast, Aguilera et al. (2018) observed preferential manuring of free-threshing wheats in the 378 

neighbouring Ile-de-France region. This reflects regional differences already observed in agricultural 379 

production at that time (Lepetz and Zech-Matterne, 2018). 380 

4.4. Seizing agricultural practices in the very short term 381 

Silo F1001 at Ymonville “Les Hyèbles” yielded grain groups from two successive stratigraphic units 382 

(belonging to the same occupation phase). We can consider that these two infillings are closely 383 

related in time, on account of the rapid obliteration of the holes by inhabitants, and the related 384 

harvest dates separated by a few years at most. δ15N values are very different between grain groups 385 

(Table 4 and Figure 4), with cereals from the later stratigraphic unit yielding δ15N values lowered by 386 

2.4‰ compared to the earlier ones. Such a decrease in the soil nitrogen isotope composition is 387 

unlikely over a few years, at most. Alternatively, the difference between the two successive harvests 388 

could be explained by a wide variety of management strategies for different cultivated plots around 389 

the farm. Some were manured while others were not. This assumption may explain diversity of δ15N 390 

values through silos from a same period.  391 
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Methodologically, the case of silo F1001 (Ymonville “Les Hyèbles”) is interesting for sampling 392 

strategies. Sampling archaeobotanical remains from several successive stratigraphic units from a 393 

same structure records the short-term diversity of agricultural practices. 394 

5. Conclusion 395 

Results from the stable isotope analysis of charred cereal grains show that manuring was a solution 396 

adopted by the Second Iron Age inhabitants of these three neighbouring farms to fertilise cultivated 397 

soils. The main argument for this is high δ15N values and their continuous increase over time, 398 

reflecting the dynamism of agricultural activities in this area, causing 15N-enrichment in the 399 

environment as a result of manure application. The lack of stalling features raises the question of 400 

livestock management and the possible mobile penning of livestock. These results suggest a mosaic 401 

landscape around the farm, with cereal fields fertilised or not from one year to the next. Different 402 

manuring rates may have been applied over time, space and cereal species, reflecting variability in 403 

farmers’ choices. Manuring is not correlated with the dominant crop. The use of manure provided 404 

the conditions for improving the agricultural economy. 405 

 406 
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