« Are friends acidic ? »: differentiating humiferous Neolithic occupation horizons (Northern France, Belgium, Luxembourg)

The general subject of this poster is the use of field soil characteristics as a complement to other approaches of Neolithic buried surface horizons.

The field study implies the differentiation of soil forming factors and preservation conditions of the soils in the site. Field approaches are very different in acidic and calcareous soil conditions, both very present in the study area. Taking these differences into account, into the field that allow some hypotheses on the type of surface horizon (is it formed in situ or an upfill, is it bioturbated or ploughed, ...) and adapted sampling to check these. However field soil characteristics are not sufficient - there are for instance no actual traces of the ploughing instruments in the neolithic cases. They almost always call for confirmation by other analytical means.

The main objective is the definition of sub-types of neolithic surface horizons, contributing to the recognition of specific in situ man-made environments. Such horizons, when dated, are part of the archaeological record. A second point of this study is to compare regional or local evolutions of soils influenced by human activity or to some extent by climate (as here in South Champaign). A third, more general goal is to encourage the discovery and study of more such well-defined horizons. Finally, these results aim at the promotion of the application of field soil characteristics to buried surface horizons.

For these 9 main types of surface horizons, it was possible to separate morphologies and laboratory characteristics. They reflect in situ activities that are little known in the study area. The results of this approach proposed only for ca. twenty cases in Northern France and Belgium/Luxembourg, may encourage more research on this topic. It seems probable that more of these can be recognized, when geo-archaeologists are conscious of their looks and importance.

Scientific contents: Kai Fechner, with the help of Frederic Broes and Adeline Garmet.

Inrap, November 2023
Inrap.fr